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ABSTRACT 

A numerical  investigation was conducted of viscous,  compressible 

flow  about a circular  cylinder  executing  harmonic  motion normal to  the 

free  stream  flow  direction. The osc i l l a to ry  motion  of  the  cylinder  led 

to  vortex  shedding, and to  a Karman vortex  s t reet .   Calculat ions were 

made a t  a Mach  number of .20, Reynolds numbers of  100 and 1000, a constant 

cylinder  oscillation  amplitude  equal  to 10% of the  cylinder  radius, and 

a range of cylinder  oscil lation  frequencies.  The var ia t ion   wi th   osc i l la -  

tion  frequency of the  time-averaged-drag  coefficient,  root-mean-squared 

l i f t   c o e f f i c i e n t ,  and shedding  frequency,  are  presented.  In  general,  in- 

creasing  the  cylinder  oscillation  frequency  decreased  the  time-averaged 

drag  coefficient,  increased  the  root-mean-squared l i f t   c o e f f i c i e n t ,  and 

had v e r y   l i t t l e   e f f e c t  on the  shedding  frequency. 
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1.0 INTRODUCTION 

1 . 1  Background 

When launch   vehic les   a re   subjec ted   to   s teady  ground  winds while  

in   the  ver t ical   posi t ion,   unsteady  aerodynamic  forces   are   exer ted on  them. 

These unsteady  forces   are   associated  with  vortex  shedding  f rom  the  s ides  

of  the  vehicle,and  appear  to  be  influenced  by  vehicle  geometry,  Reynolds 

Number, osci l la tory  vehicle   motion,   and  surface  condi t ions.  

In   the   pas t ,   spec i f ic   l aunch   vehic le   conf igura t ions   have   been  

inves t iga ted  by means of  dynamically  scaled  wind  tunnel  models. However, 

wind tunne l s   a r e   l imi t ed   i n   s i ze .  As a r e s u l t ,  no d i r e c t  tests can  be 

made of   the  aerodynamic  character is t ics   of  many veh ic l e s   o f   i n t e re s t ,  

Instead,  scaled-down  models of l a rge   veh ic l e s   a r e  examined i n  wirid tunnels ,  

and the   r e su l t i ng   da t a   a r e   ex t r apo la t ed   t o   fu l l   veh ic l e   s i ze  on the   bas i s  

of gasdynamic scaling  laws.  For  example, by increas ing   the  wind speed i n  

a wind tunnel  tes t  of a scaled-down  model,  the  Reynolds number is r a i s e d  t o  

l e v e l s   c h a r a c t e r i s t i c  of the   fu l l - s ized   vehic le .   For  a Newtonian in-  

compressible   f luid,   the  two f lows   a re   then   r igorous ly   s imi la r .  However, 

wind speeds  cannot  be  increased  indefinitely  without  generating  large 

p e r t u r b a t i o n s   t o   t h e   f l o w   f i e l d  due to   r ea l -gas   compress ib i l i t y   ( i n   p rac -  

t i c e   s u c h   e f f e c t s   a r e   t o  be  expected  for Mach numbers grea te r   than  . 3 ) .  

Since   l a rge   s ca l ing   f ac to r s   a r e  needed for   very   l a rge   vehic les   such   as  

Saturn V ,  i t  has  often  been  necessary  in wind tunnel  programs t o   v i o l a t e  

t he   s ca l ing  laws.  Typically,  measurements  are made a t  lower  Reynolds 

numbers than   des i r ed ,   i n   o rde r   t o   avo id   d ra s t i c   changes   t o   t he   f l ow  f i e ld  

due to   compress ib i l i t y  a t  high Mach numbers. A compromise i s  then   s t ruck  

i n  which wind tunnel   t es t s   a re   conducted  a t  lower  Reynolds numbers  and 

higher  Mach numbers than would character ize   the  t rue  vehicle   environment  

according t o  the gasdynamic sca l ing   laws .   In   the   case   o f   the   Sa turn  V,  

f o r  example,  wind  tunnel tests have  been  conducted a t  Reynolds numbers  of 

about 4.5 x lo6, while   the  corresponding  ful l -scale  Reynolds numbers should 

have  been  about 15 x lo6 .  P r a c t i c a l   d i f f i c u l t i e s  of s c a l i n g  wind tunnel  

test  da ta   for   l a rge   vehic les   p rovide  a s t rong  motivat ion  for   the  develop-  

ment  of a l ternate   procedures   for   determining  f low  f ie lds ,   such  as   numerical  

integrat ion  of   the  equat ions of  gasdynamic  motion. 
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To our  knowledge,  there  are  no  adequate  numerical  or  analytical 

methods  for  calculating  the  complete  three-dimensional  flow  fields  about 

such  asymmetric  vehicles  as  the  Saturn V. However, it is  realistic,  using 

existing  numerical  tools,  to  attempt to calculate flow fields  about  full- 

scale  launch  vehicle  configurations  under  conditions  of  plane  two-dimensional 

flow. It is also  feasible  in  such  calculations  to  simulate  the  wind- 

induced  motion  of  the  vehicle  by  forcing  the  body  cross  section to oscillate. 

In earlier  work,  vortex  formation  and  shedding  were  computed  around  station- 

ary  body  cross  sections  (right  circular  cylinders). The results  were  in 

quantitative  agreement  with  experimental  observation  and  with  available 

independent  theoretical  calculations,  to  an  accuracy  which  appeared  to 

depend  only  on  the  length  of  machine  time  expended  in  computation. The 

numerical  methods  used  for  the  computation  were  expected  to  be  equally  valid 

for  flow  around  an  oscillating  body  cross  section. 
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1.2  Objectives  of  the Program 

. The primary  objectives  of  this  program  were: 

a) To extend  the  numerical  methods  by  which  vortex  flow  was  prev- 
iously  computed  around  stationary  right  circular  cylinders, 233 to  the 
case  in  which  cylinders  execute  harmonic  motion  at  right  angles  to  the 

free  stream  flow  direction. 

b) To calculate  flow  fields  about  oscillating  cylinders. 

C> To determine  the  effects  of  cylinder  oscillation  and  Reynolds 
number  on  the  vortex  shedding  frequency  and  on  aerodynamic  forces  around 

the  cylinder. 
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1.3 Technical Approach 

The c a l c u l a t i o n s  of vortex  shedding  about   s ta t ionary  cyl inders ,  

noted  above, were e f f ec t ed   u s ing  a computer  code  called "AFTON 2P" which 

integrates   the  general   equat ions  of   cont inuum  motion  subject   to   the assump- 

tion  of  plane  two-dimensional symmetry. The code is based on  an "expl ic i t "  

f i n i t e   d i f f e r e n c e   r e p r e s e n t a t i o n  of the   equat ions  of motion,3y4 by 

which  mechanical  properties  at  a d i s c r e t e  set  of po in ts  (known as  a " f i n i t e  

d i f fe rence  mesh"), a re   updated   f rom  g iven   in i t ia l   condi t ions   to  any des i red  

later s tage  of motion.  For  this  program, AFTON 2P was aga in   app l i ed   t o  

the   spec ia l   ca se  of time-dependent  viscous  compressible  flow. 

1.3.1 The Problem of a  Moving I n t e r i o z  Boundary 

In   o rde r   t o   ex t end   t he  AFTON 2P computer  code t o   o s c i l l a t i n g   c y l -  

inder  problems,  the AFTON 2P equations had t o  be  modified t o   i n c l u d e  a 

closed  Lagrangian  boundary moving inside  the  region  of  f low. The motion 

of a c losed   Lagrangian   sur face   in   the   in te r ior  of  an Euler ian domain pre-  

s e n t s  a formidable  numerical  problem, t o  which two possible   solut ions  were 

inves t iga ted .  

The f i r s t  method considered was based on the   un ique   capabi l i ty  of 

the AFTON 2P code t o  employ arbitrary  t ime-dependent  coordinate  systems. 

Thus, i t  appea red   f eas ib l e   t o   de f ine   t he   su r f ace  of t he   cy l inde r   a s  one 

coordinate  surface  of a t ime-dependent  coordinate  system,  with  the  rest  of 

the  coordinate  mesh t o p o l o g i c a l l y   i d e n t i c a l   a t  any i n s t a n t  of t i m e  t o   t h e  

meshes used   to   ca lcu la te   f lows   a round  s ta t ionary   cy l inders .  The coordinate  

mesh near   the   cy l inder  would then  have  been  almost  stationary  with  respect 

t o   t h e   c y l i n d e r ,  and  would  have included  f ixed  points  of t he   cy l inde r ' s  

sur face .  A t  the  same time, coordinate  l ines  emanating from these   sur face  

poin ts  would te rmina te   a t   the   space- f ixed   la te ra l   boundar ies  of the  system. 

To s a t i s f y   t h e s e   c o n d i t i o n s   i n  a s i m p l e  way t h e  mesh points  would a l l  undergo 

per iodic   motion  with  the same period as the  cyl inder ,   but   with  ampli tudes 

decreasing  smoothly  to   zero  a t   the   boundary of the   reg ion  of ca lcu la t ion .  

However, i t  was concluded  af ter  some study  that   the  boundary  value  problem 

presented by the   shut t l ing   cy l inder   could  be  handled by  a second  method 

which was a s   r i go rous   a s   t ha t   j u s t   ou t l i ned ,   bu t  which e n t a i l e d  much less 

computer  programming e f f o r t .  
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The procedure  adopted  toaccancdatecylinder  motion  took  advantage  of 

the  fact   that   the   system  contained  only one  moving  boundary; e i t h e r   t h e  

Eulerian  f low  region  boundary  could  be  considered  f ixed  while  the  cylinder 

boundary moved, o r   v i ce  versa. By making use of a coordinate  system 

s t a t i o n a r y   w i t h   r e s p e c t   t o  the cy l inde r ,   t he   en t i r e   p rob lem of coordinate 

motion was reduced  (apart   from  the  addition of a simple body f o r c e )   t o  

t ha t   o f   ca l cu la t ing   t r anspor t  of mass, e tc . ,   across   the  f low  region  boundary;  

v a r i a t i o n s  from the  condi t ions  of   f ree   s t ream  f low were r e l a t i v e l y   s m a l l  a t  

that   boundary.   In   addi t ion,  by fixing  the  boundary  of  the  region of ca l -  

c u l a t i o n   w i t h   r e s p e c t   t o   t h e   c y l i n d e r ,  and not   wi th   respec t   to   an   ex te rna l  

reference  f rame,   logical  problems  due to   t he   f l ow of mesh points  in and out 

of the  computational domain were avoided.  Thus, a l l   p o i n t s  of t h e   f i n i t e  

d i f fe rence  mesh were made t o  undergo  the same periodic  displacement  with 

r e s p e c t   t o  a f ixed   ex terna l   re fe rence  frame as   the  center  of the  cyl inder  

i t s e l f ;   a l l  mesh points  were t i ed   t o   t he   cy l inde r   i n   r i g id -body   f a sh ion .  

While the  AFTON 2P code had t o  be modified somewhat to   p rovide  i t  with a 

mesh of t h i s   k ind ,   t he  code  changes  were  minimal;  the  required  modifications 

a re   d i scussed   i n   t he   fo l lowing   s ec t ions .  

1.3. i! Body Forces   in   the Frame-  of the  Osci l la t ing  Cyl inder  

I n   t h e  frame  of t he   o sc i l l a t ing   cy l inde r ,   t he   cy l inde r ' s   acce l e r -  

a t i o n  is  superposed on the  f low  field  as  an  apparent  or  "kinematic"  force,  

and a term  appears  in  the momentum equa t ion   t o   accoun t   fo r   t h i s   fo rce .  A t  

any  instant  of t ime  the  resul t ing  kinematic   accelerat ion,  which is  constant  

over  the whole f low  f ie ld ,  is jus t   the   nega t ive  of the   acce le ra t ion  of the  

cyl inder .  

The poin ts  of the   cy l inder  were a l l   d i sp l aced   acco rd ing   t o   t he  

equation: 

where Ax is the   d i s tance  of d i sp lacement   t ransverse   to   the   d i rec t ion  of t h e  

free   s t ream  f low,  and w and A are   the  f requency and  amplitude of o s c i l l a t i o n  

of   the  cyl inder ,   respect ively.  The code was modified t o   c a l c u l a t e   t h e  
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kinematic   accelerat ion  implied by Equation 1, and t h a t   a c c e l e r a t i o n  was 

added t o   t h e   a c c e l e r a t i o n  terms p rev ious ly   t aken   i n to   accoun t   i n  AFTON 2P.  

The  momentum e q u a t i o n   i n   t h e  moving coordinate  system is d i s c u s s e d   i n   d e t a i l  

i n  Appendices A and B. 

1 . 3 . 3  Boundary  Flow i n   t h e  Frame of t he   Osc i l l a t ing   Cy l inde r  

The accelerated  motion of t he   coord ina te   sys t em  a l so   l ed   t o  

changes i n  boundary  condi t ions  a t   the   per imeter   of   the   region of ca lcu la t ion .  

Whereas f r i c t ion le s s   s l i d ing   had   been  assumed a t   t he   l a t e ra l   boundar i e s  of 

the  system  in   previous  calculat ions  of   f low  around a s t a t iona ry   cy l inde r ,  

t h e   f l u i d  now had t o  be  given a v e l o c i t y  component  normal to   those   boundar ies ,  

equal  and o p p o s i t e   t o   t h a t  of the   cy l inder   in   the   ex te rna l   re fe rence   f rame.  

S ince   t h i s  component  of v e l o c i t y   v a r i e d   p e r i o d i c a l l y   w i t h  t i m e ,  f i n i t e   d i f -  

ference  equations were formulated  and programmed which descr ibe   mater ia l  

f l ow  in   e i t he r   d i r ec t ion   ac ross   each  of t he   l a t e ra l   boundar i e s .  With 

f l u i d  moving out  of the  region of ca l cu la t ion   ac ross  a l a t e r a l  boundary, 

that  boundary became equ iva len t   t o   t he  downstream  boundary i t s e l f ,  and was 

described by  downstream  boundary  equations  developed e a r l i e r ;   w i t h  a minor 

modi f ica t ion   for   coord ina te   mot ion ,   ex i t   condi t ions  employed i n   t h i s   s t u d y  

were der ived  f rom  the  character is t ic   boundary  condi t ion  used  in   previous 

s ta t ionary  cyl inder   problems.   Mater ia l   enter ing  the  computat ional  domain 

was s imply  ass igned  f ree   s t ream  propert ies  (see Sec t ion  2.2 and  Appendix C 

f o r  a descr ip t ion   of   the  la teral  and  downstream  boundary  condition  routine 

employed i n   t h i s  program). 

1 . 3 . 4  Conservation i n   t h e  Frame of   the  Osci l la t inp  Cyl inder;  Summary of 

Code Changes Due to  Coordinate  System  Motion 

I n  o r d e r   t o  preserve the  mass, momentum, and  energy  conservation 

proper t ies  of the  AFTON 2P equa t ions   i n   t he  moving coordinate  system, two 

addi t iona l   modi f ica t ions  were r equ i r ed .   F i r s t ,   t r anspor t  of mass,  downstream 

momentum, and  energy  across   la teral   boundaries  were i n c l u d e d   i n   t h e   f i n i t e  

difference  equat ions  for   mass ,  momentum, and  energy  conservation;  previously,  

AFTON 2P  was  programmed for   these   e f fec ts   a t   ups t ream  and/or  downstream 

boundaries.  Secondly,  the work  of kinematic body forces  had t o  be  included 
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along  with  the  surface work of boundary stresses i n  an   equa t ion   fo r   t o t a l  

energy  conservat ion.   Detai ls  of the  energy  conservat ion  calculat ion  are  

presented  in  Appendices A and B. However, the  cylinder  velocity  superposed 

throughout   the  region of flow  had  no e f f e c t  on the   ca l cu la t ion  of k i n e t i c  

energy,   s ince  the  cpde  in  i t s  o r i g i n a l  form placed   no   res t r ic t ion  on 

m a t e r i a l   v e l o c i t y   i n   t h e   i n t e r i o r  of t he   ca l cu la t iona l  domain. 

Thus,  by  viewing  the  flow  from  the  frame of t he   cy l inde r ,   t he  

equat ion and  code  changes  necessitated by the  cyl inder 's   motion were a 

r e l a t i v e l y   s l i g h t   g e n e r a l i z a t i o n  of t he  momentum and to t a l   ene rgy   ca l cu la -  

t i o n s ,  and the   app l i ca t ion   a t   l a t e ra l   boundar i e s  of condi t ions  a l ready 

provided  for  upstream  or  downstream. 
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1.4 Summary of Resul ts  

The p r i n c i p a l   r e s u l t s  of the  moving cy l inder   ca lcu la t ions  l i e  i n  

four   areas .  

a) The asymmetries introduced by t h e   o s c i l l a t i n g   c y l i n d e r  were suf -  
f i c i en t   t o   cause   vo r t ex   shedd ing   w i thou t   t he   i n t roduc t ion   o f   a r t i f i c i a l  

per turbat ions;   such  per turbat ions were r equ i r ed   i n   p rev ious   s t a t iona ry  

cylinder  problems.2 A s  p a r t  of t h i s  program, t h e   e f f e c t s  of  asymmetries 

due to   t ransverse   cy l inder   mot ion  wer'e s t u d i e d   a t  a Reynolds number of 

100, w i th   pa r t i cu la r   r e f e rence   t o   t he   shedd ing   p rocess .  It was found  that  

when the   per iod   of   osc i l la t ion  was much grea te r   than   the  t i m e ,  to, between 

t h e   s t a r t  of cylinder  motion and shedding,  shedding f i r s t   o c c u r r e d  on the 

s i d e  of the   cy l inder  which l a y   i n   t h e   d i r e c t i o n  of i n i t i a l   t r a n s v e r s e  

motion.  For  example, when the  per iod of o s c i l l a t i o n  was e q u a l   t o  3t0, 

i n i t i a l   t r ansve r se   mo t ion  of t he   cy l inde r   i n   t he   pos i t i ve   x -d i r ec t ion   ( i . e . ,  

to   the   r igh t   wi th   respec t   to   the   f ree   s t ream)   resu l ted   in   shedding  of the 

r igh t -hand   vo r t ex   f i r s t .  More genera l ly ,  i t  was observed  that   regardless  

of the  per iod of cy l inder   osc i l la t ion ,   vor tex   shedding   f i r s t   occur red  on 

the   s ide  of the   cy l inder  which  accumulated  the  greater  time-averaged  shear 

stress i n   t h e   i n t e r v a l  to. 

b) On t h e   b a s i s  of our   numerical   resul ts   for  a Reynolds number of 
100, i t  was found  tha t   a f te r   per iodic   s teady-s ta te   f low was achieved,  the 

t ime-averaged  drag  coefficient,  CD, decreased   s l igh t ly ,  and the  Strouhal  

number, S ,  increased  s l ight ly ,   wi th   increasing  cyl inder   exci ta t ion  f requency 

d (see Appendix D) .  For   instance,   an  increase  in   the  dimensionless   cyl inder  

exc i ta t ion   f requency  from 0 .17  t o  0.70, produced a drag   coef f ic ien t   decrease  

from 1.60  t o  1.56,  and a S t rouhal  number increase  from S = 0.17 t o  S = 0.18. 

- 

c)  Considerable  root-mean-squared l i f t   ampl i f i ca t ion   t ook   p l ace  when 
the  dimensionless  cylinder  oscil lation  frequency, d,  was e q u a l   t o   o r   g r e a t e r  

than   the   s ta t ionary   cy l inder   S t rouhal  number, S .  A t  a Reynolds  number, R, 

of 100, the   ca lcu la ted   va lue  of S was .17 ,  i n  agreement  with  experimental 

observation. With R = 100 and b = .17, a root-mean-squared l i f t   c o e f f i c i e n t  

of .175 was calculated;  the  corresponding  value computed f o r  a s t a t i o n a r y  
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cylinder (d - 0 )  is  about . 1 3 4 .  However,  for 6 = .70  and  R = 100,  the 
calculated  root-mean-squared  lift  coefficient  was  1.78 - more  than  ten 
times  the  corresponding  stationary  cylinder (d = 0 )  value. These  results 
are  discussed  more  fully  in  Section  2.6. 

d) On  the  basis  of  numerical  results  at b = .17,  it  was  found 
that  the  time-averaged  drag  coefficient, CD, decreased  with  increasing 

Reynolds  number. With d = .17  the  value  of ED, was  1.60  for R = 100  and 
0.53 at R = 1000.0 - a  result  in  qualitative  agreement  with  experimental 
data  for  stationary  cylinders. 

- 
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2.0 CALCULATIONS MADE AND RESULTS  OBTAINED 

2.1 Surmnary of  Problems Run and. Descrip.tion of_Me_sh U s e d  

Two s t a t i o n a r y   c y l i n d e r  problems  and t h r e e   o s c i l l a t i n g   c y l i n d e r  

problems a r e   c o n s i d e r e d   i n   t h i s   r e p o r t .  The s t a t i o n a r y   c y l i n d e r  problems 

were designated Problem  211.41  and  Problem  131.0. The o s c i l l a t i n g   c y l i n -  

der  problems  were  denoted  Problem  133.0,  Problem  133.1,  and  Problem  133.2. 

In Problem 211.41 the  formation,  development, and shedding of v o r t i c e s  from 

a s t a t i o n a r y   c y l i n d e r  w a s  ca lcu la ted  a t  R = 100.0. Some r e s u l t s  of  Problem 

211.41 were r epor t ed   p rev ious ly ,2   bu t   l i f t  and d rag   da t a   a r e   p re sen ted   fo r  

t h e   f i r s t  t i m e  here.  Problem  131.0 dealt  with  symmetric  flow  about a 

s t a t iona ry   cy l inde r  and was r u n   p r i m a r i l y   t o   g e n e r a t e   i n i t i a l   d a t a   f o r   t h e  

moving cyl inder   problems.   In  Problems  133.0  and  133.2 the   cy l inde r   o sc i l -  

la t ion  f requency was var ied  a t  R = 100.0. The Reynolds number  was 1000.0 

i n  Problem  133.1,   while  the  cylinder  oscil lation  frequency was the  same as  

t h a t  of  Problem  133.0. In each  problem  the  cylinder  radius was 1.5 cm, t h e  

f r ee   s t r eam Mach number was 0.20,  and  the  amplitude of o s c i l l a t i o n  of t h e  

cy l inder  was e q u a l   t o  a t e n t h  of i t s  rad ius .  A summary of parameter  values 

f o r   t h e  problems  of the program i s  presented   in   Table  1. 

The f i n i t e   d i f f e r e n c e  mesh which was used in a l l  moving cy l inder  

problems  and i n   t h e   s t a t i o n a r y   c y l i n d e r  problem 131.0, consis ted of 3520 

points  and i s  shown in   F igu re  1. The upstream  boundary i s  located 6.6 

diameters from the   cy l inder   cen ter ,  where i t  has l i t t l e  e f f e c t  on the  flow 

f i e l d   i n   t h e  neighborhood  of  the  cylinder. The mesh  was a l s o  used  for 

Problem  211.41,  except  that  the  upstream  boundary was located  2.25  diameters 

from the   cy l inder   cen ter .  
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2.2 Boundary Conditions Employed 

I n  a l l  ca lcu la t ions   the   dens i ty ,   spec i f ic   in te rna l   energy ,  and 

ve loc i ty   o f  material i n   t he   y -d i r ec t ion   ( t he   f r ee  stream d i r e c t i o n ;  see 

Figure l), were g iven   t he i r   f r ee   s t r eam  va lues  at  the  upstream  boundary. 

For   the  s ta t ionary  cyl inder   problems,   the  veloci ty  of material i n   t h e  x- 

d i r e c t i o n  was zero a t  the  upstream  boundary. Howeyer, s ince   t he  moving 

cylinder  problems  of  the program  employed a mesh wlfich was s t a t i o n a r y   i n  

the  frame  of the   cy l inder  (see Sec t ion   1 .3) ,   the  x-component  of m a t e r i a l  

veloci ty   a t   the   upstream  boundary was set  equal  and oppos i t e   t o   t he   cy l -  

inder   ve loc i ty   in   the   l abora tory   f rame.  

A s  noted in   Sec t ion   1 .3 .4 ,   t he  method used t o  compute  downstream 

boundary  flow  for a l l  problems  of t h i s  program was developed  for  previous 

s t a t i o n a r y   c y l i n d e r   calculation^,^^^ and is based on the  method of charac- 

t e r i s t i c s .  The genera l iza t ion   to   the   case  of i n t e r e s t   h e r e ,   i n  which the  

boundary moves with  respect   to   the  lab  f rame,  i s  g iven   i n  Appendix C. 

In   the   s ta t ionary   cy l inder   p roblems,   f lu id  was allowed t o  

s l ide   wi thout   f r ic t ion   a long   the   l a te ra l   boundar ies ,  i .e . ,  a t  a l a t e r a l  

boundary  the  normal component  of m a t e r i a l   v e l o c i t y ,  and the   t angen t i a l  

s t r e s s ,  were zero.   For  the moving cylinder  problems,  which  were  solved 

numerical ly   in  a frame s t a t iona ry   w i th   r e spec t   t o   t he   cy l inde r   (Sec t ion  

1.3) ,  mass, e t c . ,  f lowed  across   the  la teral   boundaries  of t h e   f i n i t e   d i f -  

ference mesh e i t h e r  from the   f r ee   s t r eam  to   t he  mesh, o r  from the mesh t o  

t h e   f r e e  stream. When the  la teral   boundary moved in to   t he   f r ee   s t r eam,  

t ransport   took  place from t h e   f r e e   s t r e a m   t o   t h e  mesh,  and f ree   s t ream 

conditions  were imposed a t   t h e  boundary. On the   o ther  hand,when the  

l a t e r a l  boundary moved  away from the   f r ee   s t r eam,   t hen   t he   cha rac t e r i s t i c  

boundary  condition  (Section  1.3.2) w a s  used i f  mass  flowed  across  the 

boundary  out  of  the mesh,  and f r e e  stream condi t ions were used i f  mass 

flowed i n t o   t h e  mesh (see Appendix B f o r   d e t a i l s  of t h e   c h a r a c t e r i s t i c  

boundary  condi t ion) .   These  rules   led  to   s table   numerical   f low  f ie lds   near  

the   l a te ra l   boundar ies  of t h e   o s c i l l a t i n g   c y l i n d e r  problems (see Sec t ion  

2 .5   fo r   fu r the r   d i scuss ion ) .  
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Fina l ly ,  a no-slip  boundary  condition was imposed a t  the   cy l ind r i ca l  

s u r f a c e   i n  a l l  problems.   For   the  s ta t ionary  cyl inders ,   the   veloci ty  of f l u i d  

a t  the   cy l inder   sur face  was then set equal  to  zero.   For  the moving cy l inde r  

problems,  the  surface  velocity was zero  in  the  computational  frame,  which was 

f ixed   wi th   respec t   to   the   cy l inder .  
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2.3 I n i t i a l   C o n d i t i o n s  

Apart from the   no-s l ip   condi t ion  imposed a t  the   cy l inder   sur face ,   the  

two s t a t iona ry   cy l inde r  problems (Probhms 211.41  and  131.0)  were s t a r t e d  from 

impulsive  ini t ia l   condi t ions,   i .e . ,   condi t ions of  uniform  velocity,   density,  and 

energy. The f low  f ie ld   about  a f u l l   s t a t i o n a r y   c y l i n d e r   a t  a Reynolds number 

of  100.0  (Problem  131.00; see Table l ) ,  and a t  a c h a r a c t e r i s t i c  time r of  2.7, 

w a s  subsequently  taken as t h e   i n i t i a l   f i e l d  of f low  for   the moving cy l inder  

problems. A t  7 = 2.7 ,  a symmetrical   vortex  pair  had  developed i n  Problem  131.00, 

with a rear   s tagnat ion   po in t   loca ted   about  3.2 c y l i n d e r   r a d i i  downstream of  the 

cyl inder   center ;   the   vortex  centers  were located  about 1.855 c y l i n d e r   r a d i i  from 

the  cyl inder   center .  The f low  f i e ld   fo r  Problem  131.00 a t  a c h a r a c t e r i s t i c  

time  of  2.7 i s  shown i n   t h e  form  of a ve loc i ty   vec to r   p lo t   i n   F igu re  2.  The 

vectors   of   Figure 2 a r e   p r o p o r t i o n a l   t o   t h e   p a r t i c l e   v e l o c i t i e s   a t   t h e   p o i n t s  

of t h e   f i n i t e   d i f f e r e n c e  mesh; a  mesh poin t  i s  l o c a t e d   a t   t h e   t a i l  of each 

vec tor .  
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2.4 Review of  Numerical  Results  Obtained  Previously  for a 
S ta t iona ry   Cy l inde r   a t  a  Reynolds Number of  100 

Vortex  formation,  development, and shedding  were  calculated  about a 

s t a t i n n a r y   c y l i n d e r   a t  a free  stream  Reynolds number of  100, and a t  a f r e e  

stream Mach number of  .20  (Problem  211.41;  see  Table  1).  This  system,  which 

was otherwise  symmetric  about a plane  through  the  cylinder  axis,  was perturbed 

asymmetrically  to  induce  vortex  shedding. The ca l cu la t ion  was then  carr ied 

through  the  shedding of f ive   vo r t i ce s .  When a p e r i o d i c   s t a t e  had been 

reached,  the computed flow f i e ld   con ta ined  a vortex  sheet   with a shedding 

frequency  within 10%  of the  value  measured  for R = 100.0,  namely, S = .17 .  

The time-averaged  drag  coefficient,  time-averaged l i f t   c o e f f i c i e n t ,  

and root-mean-squared l i f t   c o e f f i c i e n t  were a l s o  found  from  the s t r e s s   f i e l d  

of  Problem  211.41.  For this  purpose,   the  instantaneous  force of the   f lu id  

on the  cyl inder  was computed by in tegra t ing   numer ica l ly   the   s t ress  component 

normal to   cy l inder   sur face  and the   s t r e s s  component tangent ia l   to   the  cyl inder  

surface,   over  the  cylinder  surface.  The component of the   resu l tan t   force   a long  

the   d i r ec t ion  of f ree   s t ream  f low  def ines   the  drag  force,  and the component 

normal t o   t h e   f r e e   s t r e a m   f l o w   d i r e c t i o n   i s   t h e   l i f t   f o r c e .  The instantaneous 

l i f t  and d rag   coe f f i c i en t s  were  then  determined  from  the r e l a t i o n s  

- 
‘D - 

Drag Force 
2 

%P,& D 

c- = Li f t   Fo rce  

where p, i s  the  f ree   s t ream  densi ty ,  TJ, i s  the   f ree   s t ream  ve loc i ty ,  and D 

i s  the  cylinder  diameter.   Finally,   t ime-averaged l i f t  and drag   coef f ic ien ts  

were  found by numerical   evaluation  of  the  following  integrals 
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1 

D t  CD d t  

where the  time t is measured  from t h e   s t a r t  of cylinder  motion. The root-  

mean-squared l i f t   c o e f f i c i e n t  was determined by numerical   evaluation of the 

i n t e g r a l  t % 
C L (r .m.s.)  = li C: d t ]  

For Problem  211.41, the  time-averaged  drag  coefficient  approached  the 

value = 1 . 7 ,  which i s  approximately 3% lower  than  the  value of C measured 

by C. Wieselsberger . The time-averaged l i f t   c o e f f i c i e n t  was zero;  the  instan- 

taneous l i f t   c o e f f i c i e n t   o s c i l l a t e s   a b o u t   z e r o   i n   a   p e r i o d i c  manner. However, 

the  calculated  root-mean-square l i f t  c o e f f i c i e n t ,  C (r .m.s.) ,  was .134. 

D 6 D 

L 
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2.5  Vortex S t r ee t   Ca lcu la t ion   fo r   an   Osc i l l a t ing   Cy l inde r  
a t  a Reynolds Number of  100 

I n   t h e   f i r s t  moving cylinder  problem  attempted  (Problem  133.0; see 

Table  1)  the  f low  field was ca lcu la ted   about  a r i g h t   c i r c u l a r   c y l i n d e r   a t  a 

Reynolds number of 100.0. The cy l inde r  w a s  made t o   o s c i l l a t e   a t  a frequency 

corresponding  to  a Strouhal  number of .17. A s  previous ly   no ted ,   the   in i t ia l  

s t a t e  of  motion  for  Problem  133.0 was spec i f i ed   a s   t he   f l ow  f i e ld  of  Problem  131.0 

a t  a c h a r a c t e r i s t i c  time of 2.7;   the  cylinder  displacement was prescribed  by 

Equa t ion   ( l ) ,  and the  double  amplitude  of  oscil lation was 10% of  the  cylinder 

diameter.  Problem  133.0 was r u n   t o  a c h a r a c t e r i s t i c  time of  10.9,  which  corres- 

ponds to   about   1 .5   cycles   of   cyl inder   osci l la t ion.  A s  can  be  seen  from 

Equation (l), the   cy l inder  moved i n i t i a l l y   i n   t h e   p o s i t i v e   x - d i r e c t i o n   ( t o   t h e  

r i g h t )  , and shedding  'began  with  the  right-hand  vortex a t  a c h a r a c t e r i s t i c  time 

of approximately  4.63  (about  .85 msec a f t e r   t h e   s t a r t  o f   the   cy l inder   osc i l la -  

t i o n ) .  When shedding  took  place, (T = 4.63) ,   the   cyl inder  had completed  about a 

th i rd   o f  i t s  cycle  of  motion,  with a time-averaged  displacement, Ax, of  .lo85 cm 

in   t he   pos i t i ve   x -d i r ec t ion .  

- 

That  vortex  shedding  took  place f i r s t  on the   r i gh t   s ide   o f   t he   cy l inde r  

i s  cons i s t en t   w i th   t he   f ac t   t ha t   t he   shea r  stress was l a r g e r  on the   r i gh t   t han  

on the   l e f t ,   i n   t he   pe r iod   p r io r   t o   shedd ing .  A l a r g e r   s h e a r   s t r e s s  on t h e   r i g h t  

than on t h e   l e f t  is a physical ly   reasonable  outcome  of t h e   c y l i n d e r ' s   i n i t i a l   l e f t -  

to-r ight   t ransverse  motion;   the  r ight   boundary  layer  is compressed  while  the l e f t  

layer  expands, and the  normal  gradientaof  tangential   velocity  should  therefore  be 

l a r g e r  on the   r igh t   than  on t h e   l e f t .  It can  be  seen from Figure 3 tha t   t he  

numerical   resul ts   bear   out   these  observat ions;   t ime  his tor ies   of   shear  stress on the 

r i g h t -  and le f t -hand   cy l indr ica l   sur face   a re   p resented   in   F igure   3 ,  a t  points  

plus and minus ninety  degrees from the  forward  stagnation  point  of  the  cylinder 

( i . e . ,   a t   t h e   p o i n t s  x = 1.5 cm, y = 0.0 cm, and x = 1.5 cm, y = 0.0 cm respec- 

t i v e l y ) .  The time s c a l e   i n   F i g u r e  3 i s  measured  from  the s t a r t  of  cylinder 

o s c i l l a t i o n ,  when t = 1.19 msec  and T = 2.7. From Figure 3 i t  i s  seen   tha t  

the   shear  stress i s  g r e a t e r  on the   r igh t   than  on t h e   l e f t  up t o  a time of  .85  msec, 

o r  T 4.1. 

16 



Vortex  shedding i n  Problem  133.0 i s  i l l u s t r a t ed   by   F igu res  4 - 7 , 
i n   t h e  form  of ve loc i ty   vec to r   p lo t s .   I n   F igu re  4 ( a t  a c h a r a c t e r i s t i c  time 

of   7 .08) ,   the   f i r s t   r igh t -hand  vor tex   has  moved f a r  downstream,  and t h e   f i r s t  

lef t -hand  vortex is a l s o  seen t o  be mbving downstream. The displacement  of  the 

c y l i n d e r   a t  7 = 7.08 i s  a l so   exh ib i t ed   i n   F igu re  4 ,  s ince   the   cy l inder ' s   cen ter  

vas   i n i t i a l ly   co inc iden t   w i th   t he   i nd ica t ed   space - f ixed   o r ig in   o f   coo rd ina te s ;  

ve loc i ty   vec to r s  and  mesh p o i n t s   a r e   a l l  shown re l a t ive   t o   t he   space - f ixed  frame. 

A t  a c h a r a c t e r i s t i c  time  of  7.95  (Figure  5),  the f i r s t   l e f t - h a n d   v o r t e x  i s  s t i l l  

propagating  downstream,  and a second  right-hand  vortex  has  begun  to form. I n  

Figure 6 (7 = 8 .9 ) ,   t he   f i r s t   l e f t -hand   vo r t ex   has  moved s t i l l  f a r t h e r  downstream, 

while  the  second  r ight-hand  vortex  has become f u l l y  formed. The ve loc i ty   vec to r  

p l o t  of Figure 7 (7 = 10.45) shows the  second  right-hand  vortex  shedding, and 

another  left-hand  vortex  forming. A s  can  be  seen from Figures  4 - 7 ,  the  flow 

a t   t h e   l a t e r a l   b o u n d a r i e s  i s  essent ia l ly   f ree   s t ream  f low,   wi th  no evidence 

o f   n u m e r i c a l   i n s t a b i l i t i e s ;   t h e   l a t e r a l  boundary  condition imposed i n  Problem 

133.0  therefore   appears   sat isfactory  for   f lows  of   this   type.  

Af te r  many vortices  have  shed,  the  f low i s  experimentally  observed  to 

be  almost  periodic;  a v o r t e x   d e t a c h e s   i t s e l f   f i r s t  from  one s ide  of   the   cyl inder ,  

then from the   o the r   s ide ,  and so  on. Under conditions of near-periodic  f low, 

times of a r r i v a l  of successive  vortex  centers   a long a g iven   l ine  normal to   the 

c e n t e r   l i n e  of the  system,  are  almost  equally  spaced. 

In   o rde r   t o   ob ta in  a per iodic   f low  f ie ld ,  Problem 133.0 was run   f a r  

enough to  permit  the  shedding  of  four  vortices.  From a careful  examination of 

ve loc i ty   vec to r   p lo t s ,   t he   t r a j ec to r i e s   o f   t he   cen te r s  of  the  four  vortices 

were  determined.  These t r a j e c t o r i e s   a r e  shown in   F igu re  8, where y /a  is p lo t t ed  

as a funct ion  of  time("y" i s  the  streamwise  posit ion  coordinate and  "a" the 

cy l inder   rad ius) .  The time  between  the  passage of L e f t  Hand Vortex One(LHV1) 

and Right Hand Vortex Two (RHV.2) a t   . y / a  = 3.9 was 1.26  msec, and the  time  period 
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between  the  passage  of RHV2 and LHV2 a t   y / a  = 1.6, was 1.28 msec (see  Figure 8; 
shedding  began  on  the  r ight) .   Since  these  t ime  periods  are  within 2% of  each 

o the r ,  i t  is assumed tha t   near -per iodic   f low  ex is t s  2.32  msec a f t e r   t h e   s t a r t  

o f   cy l inder   osc i l la t ion .  By doubling  the  t ime  differences  cited,   numerical  

approximations  to  the  vortex  shedding  period  were  obtained;  expressed  as 

dimensionless  Strouhal numbers  (Appendix D) the   per iod found a t   y / a  = 3.9 

was .175  and a t   y / a  = 1.6  the  period was .172. The measured  Strouhal number 

f o r  a s t a t i o n a r y   c y l i n d e r   a t  R = 100.0 i s  .17. 

Based on  Equations  (2)  through  (6),values  of  the  coefficients  of 

time-averaged  drag,  time-averaged l i f t ,  and  root-mean  squared l i f t  were computed 

f o r  Problem 133.0. The t ime-averaged  drag  coefficient was 1.60 - about 6% l e s s  

than   tha t   ca lcu la ted   for  a s t a t i o n a r y   c y l i n d e r   a t  a Reynolds number of  100.0 

(see  Section  2.4).  The time-averaged l i f t   c o e f f i c i e n t  was zero. The root-mean 

squared l i f t   c o e f f i c i e n t  was ,175, a value  approximately 30% greater   than  the 

root-mean-squared l i f t  coe f f i c i en t   ca l cu la t ed   fo r  a s t a t i o n a r y   c y l i n d e r   a t  a 

Reynolds number of  100.0  (Problem  211.41; see  Sect ion  2 .4) .  The l i f t   a m p l i f i c a -  

t i on   ca l cu la t ed   fo r  a cy l inder   osc i l la t ion   f requency   equal   to   the   s ta t ionary  

cylinder  shedding  frequency, i s  cons i s t en t   w i th   ava i l ab le   expe r imen ta l   r e su l t s .  

Cincot ta '   experimental ly   invest igated  unsteady  aerodynamic  l i f t   forces  on 

osc i l l a t ing   cy l inde r s   ove r  a range  of  Reynolds  numbers  from  .4 x lo6  t o  10.7 x 

10 . Root-mean-squared l i f t  amplication was observed when the model o s c i l l a t i o n  

frequency was approximately  equal  to  the  stationary model shedding  frequency. 

6 
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2.6 The E f f e c t  of  Cylindef-  Oscillation  Frequency on 
Vortex  Shedding.  Drag,  and L i f t  

To determine  the  effect!   of   the   cyl inder   osci l la t ion  f requency  on  the 

shedding  frequency,  time-averaged  drag  coefficient, and  root-mean-squared 

l i f t  coe f f i c i en t ,   t he   f r equency   o f   o sc i l l a t ion   o f   t he   cy l inde r  was increased 

to   an  equivalent   Strouhal  nmnber value of .70  (Problem  133.2,  see  Table  1). 

I n i t i a l   c o n d i t i o n s  were  again  those  of  the  f low  field of  Problem  131.0 a t  

a c h a r a c t e r i s t i c  time of 2.7 ( see   Sec t ion  2 . 3 ) ,  and the  Reynolds number was 

100.0.  For  Problem  133.2 vortex  shedding i s  i l l u s t r a t e d   i n   t h e   v e l o c i t y  

vec tor   p lo ts   o f   F igure  9 - 1 2 ;  a t   t h e   i n c r e a s e d   c y l i n d e r   o s c i l l a t i o n   f r e -  

quency of Problem  133.2, t h e   v e l o c i t i e s   o f   t h e  mesh poin ts   on   the   cy l indr ica l  

su r f ace   a r e   l a rge  enough to   appear   in   the   vec tor   p lo ts .  

Although  the  cylinder moved in i t i a l ly   i n   t he   pos i t i ve   x -d i r ec t ion  

( t o   t h e   r i g h t ,   a s   i n  Problem 133.0), the  left-hand  vortex khed f i r s t   i n  Problem 

133.2, a t  a c h a r a c t e r i s t i c   t i m e  T of  5.30. In   t he   ve loc i ty   vec to r   p lo t  of 

Figure 9 (7 = 7.17),  the  left-hand  vortex i s  d i sp laced   s l i gh t ly  downstream 

of the  right-hand  vortex.  Shedding  of  the  left-hand  vortex  first,   despite  the 

i n i t i a l   l e f t - t o - r i g h t   c y l i n d e r   m o t i o n ,  is cons i s t en t   w i th   t he   f ac t   t ha t   t he  t i m e -  

averaged  shear   s t ress  was g r e a t e r  on the   l e f t   t han  on t h e   r i g h t   a t   t h e  time 

shedding  took  place. The p o s s i b i l i t y  of s u c h   s h e a r   s t r e s s   h i s t o r y   a r i s e s  when 

the  transverse  oscil lation  frequency  exceeds  the  vortex  shedding  frequency. 

Other  things  being  equal,  if  vortex  growth i s  s l igh t   ove r  a period of t ransverse  

o s c i l l a t i o n ,   t h e n   c i r c u l a t i o n  w i l l  accumulate on t h e   l e f t  and r igh t   in   about   equa l  

amounts i n  one cyc le .   S ince   the   cy l inder   s ta r t s  from i t s  mean p o s i t i o n ,   r i g h t   t o  

l e f t  motion  begins   af ter  a quarter   of  a cycle i s  complete;   c i rculat ion on the 

l e f t  w i l l  then  tend  to  exceed  that on the  r ight   during  the  third  quarter-cycle ,  

and  any shedding i n   t h a t   i n t e r v a l  would take  place on the   l e f t .   Ac tua l ly ,   t he  

i n i t i a l   i n c i d e n c e  of  shedding is complicated  by  vortex  growth, and  by o ther  

t r a n s i e n t s   a r i s i n g  from bo th   t he   i n i t i a l   cond i t ions  of  flow  and  cylinder  motion; 

circulation  does  not  accumulate on t h e   r i g h t   d u r i n g   t h e   f i r s t  and four th   quar te rs  

of a c y c l e ,   i n   j u s t   t h e  same way as  on t h e   l e f t   d u r i n g   t h e  second  and th i rd   qua r t e r s .  

A s  a r e s u l t ,   t o   g i v e  a convincing  account of i n i t i a l   shedd ing  on t h e   l e f t  may 

r equ i r e  a detai led  understanding of r e l a t ive ly   minor   a spec t s  of the  motion,  par- 

t i c u l a r l y   i f   t h e   o s c i l l a t i o n   f r e q u e n c y  is much greater  than  the  shedding  frequency. 

I n  Problem  133.2 the   f requency   of   osc i l la t ion  was about  twice  that   for  shedding. 
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Figure  13 shows shear stress h i s t o r i e s   f o r  Problem  133.2 a t   p o i n t s  

on the   r i gh t -  and le f t -hand   cy l indr ica l   sur faces ;   the   po in ts   a re   loca ted   n ine ty  

degrees  (plus and  minus)  from the  forward  s tagnat ion  point  of the   cy l inder   ( see  

Figure  1) .  The time a x i s  of  Figure  13 i s  measured  with  respect  to  the s tar t  

of   cyl inder   osci l la t ion.  Based  on the  resul ts   presented  in   Figure  13,   t ime-  

averaged  shear   s t resses  7 ( A )  and ; ( r )  were determined on t h e   l e f t  and 
XY X y  

the   cyl inder ,   respect ively,by  numerical   evaluat ion  of   the  fol low- r i g h t   s i d e s  of 

ing   in tegra ls :  

r t  

r t  

where T (a)  and T ( r )   a r e   i n s t a n t a n e o u s   s h e a r   s t r e s s e s   a t   t h e   l e f t -  and r i g h t -  

hand points ,  and t i s  the  time.  Shedding  occurred  1.146 msec a f t e r   t h e   s t a r t  

of   cyl inder   motion  ( i .e . ,   a t  a c h a r a c t e r i s t i c  time T equal  to  5.30),when  the 

t ime-averaged  shear  stresses on t h e   r i g h t  and l e f t ,   r e s p e c t i v e l y ,  were 

XY XY 

( r )  = .00420  and (a )  = .00455. I n  Problem  '133.0 (see  Figure  3)  the 

instantaneous  shear   s t ress  was always g rea t e r  on the   r igh t   p r ior   to   shedding ,  

and the   r i gh t  hand vor tex   shed   f i r s t   ( see   Sec t ion   2 .4) .  Thus,   the  results of 

Problems  133.0  and  133.2 a re   cons is ten t   wi th   the   idea   tha t   vor tex   shedding  w i l l  

occur on the   s ide  of the  cylinder  having  the  greater  t ime-averaged  shear  stress 

a t   t h e  time  of  shedding. 

XY X y  

Based on Equations  (2) - (5),  time-averaged l i f t  and drag   coef f ic ien ts  

were  computed f o r  Problem  133.2. The time-averaged l i f t   c o e f f i c i e n t  was zero,  

i . e . ,   t he   i n s t an taneous   l i f t   coe f f i c i en t   o sc i l l a t e s   abou t   ze ro .  The time- 

averaged  drag  coeff ic ient  was 1.56 - about 11% l e s s   t h a n   t h a t  of  a s t a -  

t i o n a r y   c y l i n d e r   a t  a  Reynolds number of  100.0. The time-averaged  drag co- 

e f f i c i e n t  is shown in  Figure  14  as  a funct ion  of   cyl inder   osci l la t ion  f requency.  
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It can  be  seen from Figure 14 that   the   drag  decreases   with  increasing  osci l la t ion 

frequency, a  dependence tha t   appea r s   qua l i t a t ive ly   co r rec t .  Due to   the  t rans-  

ve r se   ve loc i ty  of the   cy l inder ,  which i s  direct ly   proport ional   to   the  ampli tude,  

A ,  and frequency  of   osci l la t ion,  w ,  (see  Equat ion  ( l ) ) ,   the   instantaneous 

speed of f r e e  stream f low  r e l a t ive   t o   t he   cy l ind r i ca l   su r f ace  w i l l  be  equal  to 

or   g rea te r   than   the   f ree  stream speed r e l a t i v e   t o  a laboratory  frame.  Thus, 

the  instantaneous  Reynolds number, R ' ,  r e l a t ive   t o   t he   cy l inde r ,  and based on 
the  cyl inder 's   d iameter ,  w i l l  always b e  greater  than  or  equal  to  the  Reynolds 

number, R, re la t ive  to   the  laboratory  f rame.   Therefore ,   i f   the   t ime-averaged 

Reynolds  number, E ' ,  r e l a t i v e   t o   t h e  moving cy l inder   i s   def ined   as  

2l-l 

R - I  = Ll 2n R '  dB (9) 

where 8 = w t ,  then g' 2 R. Experimentally i t  has  been  found  that  the  drag 

coe f f i c i en t   fo r  a s ta t ionary  cyl inder   var ies   inversely  with  Reynolds  number . 
Therefore ,   the   numer ica l   resu l t   tha t   a t   cons tan t   osc i l la t ion   ampl i tude   the  

drag  coeff ic ient   decreases   with  increasing  cyl inder   osci l la t ion  f requency 

a p p e a r s   a t   l e a s t   q u a l i t a t i v e l y   c o r r e c t .  

6 

The increase  in  the  Reynolds  nmber,  E', with   the   cy l inder   osc i l la t ion  

frequency, W ,  can  be  used  to  establish a q u a l i t a t i v e   r e l a t i o n  between cu and 

the  time-averaged  boundary  layer  thickness, 6 ,  on the   cy l indr ica l   sur face .  

Since E' increases   with W ,  the  local  Reynolds number per  unit   length  around a 

cy l indr ica l   c ross -sec t ion   a l so   increases   as  u) increases .   Reca l l ing   tha t   the  

boundary  layer  thickness, i s   inverse ly   p ropor t iona l   to   the   square   roo t  of the 

. l o c a l  Reynolds  number, i t  follows  that  6 should  decrease  with ' increasing  cyl inder  

osci l la t ion  f requency.   For   an  inf ini te   f la t   p la te   execut ing  s imple  harmonic 

motion  with  frequency w along  the  direct ion of f r e e  stream flow , t he   e f f ec t ive  

boundary  layer a t  the  plate   has   the  thickness  

- 

- 

8 
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2 1  



.. . . . . . . -. - ". " . . . . .. . . ... .. . . 

I 

where v i s  the   k inemat ic   v i scos i ty ;   s imi la r   resu l t s   apply   for   o ther   so l id  

s u r f a c e s   o s c i l l a t i n g   i n  a f l u i d   a t  rest o r   f o r  a f i x e d   s u r f a c e   i n   a n   o s c i l l a -  

t ing  stream . Thus,  the  decrease  in  boundary  layer  thickness  with  oscil lation 

frequency,  found  in  the  results of  Problems  133.0  and  133.2,is  not  only 

phys ica l ly   unders tandable ,   bu t   a l so   has  a f i rm  theore t ica l   bas i s   in   uns teady  

boundary  layer  theory. 

9 

After  a per iodic   s teady-s ta te  was achieved,   the   vort ices   in  Problem 

133.2  shed a t  a Strouhal  number of  .18. The v a r i a t i o n  of  Strouhal number with 

cy l inder   osc i l la t ion   f requency ,   for  a constant  double  amplitude of o s c i l l a t i o n  

equal   to  10%  of  the  cylinder  diameter, i s  shown in  Figure  15.  As can  be  seen 

from Figure .15, increas ing   the   cy l inder   osc i l la t ion   f requency   causes  a s l i g h t  

increase  in  shedding  frequency,  as one might  expect;  the  effective  Reynolds 

number R increases  with  frequency, and the  Strouhal number i s  known experi-  

mentally  to  increase  with  Reynolds number. 

- 1  

To e s t a b l i s h  a r e l a t i o n  between  transverse  cylinder  motion and the 

d i r e c t i o n  of the  instantaneous l i f t   f o r c e  on the  cyl inder ,   the   instantaneous 

l i f t   c o e f f i c i e n t  was s tudied   as  a function  of  time  for Problem 133 .2  a f t e r  a 

p e r i o d i c   s t a t e  had  been  achieved. The time v a r i a t i o n  of  the  instantaneous 

l i f t   coe f f i c i en t ,   cy l inde r   d i sp l acemen t ,  and cy l inder   acce le ra t ion   a re  shown 

in   F igure  16. A p o s i t i v e   l i f t   c o e f f i c i e n t   i n d i c a t e s  a force   in   the   pos i t ive  

x-direct ion  (see  Figure  1) .   Aside from  a small  phase  angle, it can  be  seen 

from Figure 16 tha t   t he  aerodynamic l i f t   f o r c e  on the  cyl inder   general ly  

opposes   the  cyl inder   accelerat ion,  a r e su l t   be l i eved   t o   ho ld   fo r  any  cylinder 

osc i l la t ion   f requency .  

From the   ins tan taneous   coef f ic ien ts  of Figure 16 and Equations  (3) and 

(6) ,  a  root-mean-squared l i f t   c o e f f i c i e n t  of  1.78 was computed fo r  a cyl inder  

oscil lation  frequency  corresponding  to a Strouhal.number of 0.70 (Problem  133.2). 

The root-mean-squared l i f t  i s  therefore  about  ten  t imes  larger  for a cyl inder  

osci l la t ion  f requency  corresponding  to  a Strouhal  number of 0.70 (Problem 133.2), 
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than   for   an   equiva len t   S t rouhal  number of 0.17 (Problem  133.0)"a  tremendous 

l i f t   i n c r e a s e .  The r ap id  growth  of l i f t   w i t h   o s c i l l a t i o n   f r e q u e n c y   r e f l e c t s  

a corresponding  growth i n   t h e   t r a n s v e r s e   p r e s s u r e   d i f f e r e n c e   a c r o s s   t h e   c y l i n d e r ,  

as   the   osc i l la t ion   f requency   increases .  The p res su re   d i s t r ibu t ion   on , the  

c y l i n d r i c a l   s u r f a c e ,   a t  a cy l inde r   o sc i l l a t ion   f r equency   co r re spond ing   t o  

-q3 = 0.17 (Problem  133.0),  and a t  a time when a periodic  motion was achieved 

(7 = 10.45; see Figure 7 ) ,  is presented  in   Figure 17. In   F igure  17 the  pressure 

is grea te r   on   the   r igh t -hand  cy l indr ica l   sur face   than   on   the   l e f t -hand   sur face ,and  

t h e   l i f t   f o r c e  i s  the re fo re  in  the   pos i t ive   x -d i rec t ion .  The area  between  the 

cu rves   de f ines   t he   p re s su re   fo rce   con t r ibu t ion   t o   t he   l i f t  and corresponds 

t o  a p o s i t i v e   p r e s s u r e   l i f t   c o e f f i c i e n t ,  CLP,equal t o  0.127, a value  approxi- 

mately 24 percent less than   t he   t o t a l   i n s t an taneous   l i f t .  The p r e s s u r e   d i s t r i -  

but ion on the   cy l ind r i ca l   su r f ace   a t  a cyl inder   osci l la t ion  f requency  corres-  

ponding t o  b =  0.70  (Problem  133.2),and a t  a c h a r a c t e r i s t i c  t i m e  T of 10.05, 

i s  shown in   F igure  18. A v e l o c i t y   v e c t o r   p l o t  of  the  f low  field a t   t h i s   t i d e  

i s  presented   in   F igure  12 .  In   th i s   case   the   p ressure  is general ly   higher  on 

the  r ight-hand  surface  than on t h e   l e f t ,  and the l i f t   f o r c e  is in   the   nega t ive  

x-direct ion.  The a rea  between  the  right- and left-hand  curves now corresponds 

t o  CLp = - 0.804, a value which is about 23  percent   smaller   than  the  total  

instantaneous  l if t ,   but  about  6.3  t imes  that   ci ted  above  for Problem  133.0. Such 

a r e s u l t  i s  qua l i ta t ive ly   reasonable ;   as   the   cy l inder   osc i l la t ion   f requency   in -  

c reases ,   the  maximum compression  of  f luid  increases  on  the  side  of  the  cylinder 

i n   t h e   d i r e c t i o n  of  motion,  while  the minimum compression  decreases  on  the 

o the r   s ide .   L i f t   f o rces   shou ld   t he re fo re  grow wi th   cy l inde r   o sc i l l a t ion   f r e -  

quency, as   the  numerical   resul ts   indicate .  

The variation  of  the  root-mean-squared l i f t   c o e f f i c i e n t , C   ( r . m . s . ) ,   w i t h  L 
cyl inder   osc i l la t ion   f requency  is presented  in  Figure  19. The curve  fa i red 

through  the  data i s  based  on  the  experimental   results  of  Cincottal ,   which show a 

peak  value  of C (r.m.s.) a t  the  aerodynamic  shedding  frequency  for a s t a t i o n a r y  

cyl inder  (S = 0.17) ; t ( r .m.s . )   then   decreases   wi th  S reaching   the   s ta t ionary  

cylinder  root-mean-squared l i f t   c o e f f i c i e n t   a t   a p p r o x i m a t e l y   t w i c e   t h e  aerodynamic 

Strouhal  number f o r  a s t a t iona ry   cy l inde r .   C inco t t a ' s   da t a  are a l s o  shown i n   t h e  

f igure.  

L 
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2.7  Effects  of Reynolds Number Variat ion  For   an  Osci l la t ing  Cyl inder  

To inves t iga te   the   in f luence  of  Reynolds number on the  shedding 

frequency,  drag, and root-mean-squared l i f t ,   t he   f l ow  f i e ld   abou t   an   o sc i l l a -  

t ing   cy l inder  was c a l c u l a t e d   a t  a  Reynolds number  of 1000.0  (Problem  133.1). 

The cy l inder   osc i l la t ion   f requency  and amplitude  were  the same as  those  of 

Problem  133.0. The f i n i t e   d i f f e r e n c e  mesh consisted  of  the  two-dimensional 

a r r ay  of 44  x 80 po in t s  shown in   F igure  1. The i n i t i a l  f low  f ie ld  was again 

i d e n t i c a l   t o   t h a t  of  Problem  131.0 a t  a cha rac t e r i s t i c   t ime  of  2.7, when a 

symmetrical  vortex  pair had already  developed. The sudden  increase  in 

Reynolds number caused  apparently random o s c i l l a t i o n s   i n   t h e   p r e s s u r e  on the 

cy l ind r i ca l   su r f ace ,  and subsequent ly   in   the   ins tan taneous   d rag   coef f ic ien ts .  

Af t e r  approximately 250 t imesteps  of   calculat ion  these  osci l la t ions  appeared 

to  have damped out ,  and the  flow was  assumed to   be   t ha t   app ropr i a t e   t o  a 

Reynolds number  of 1000.0. The c a l c u l a t i o n  was continued  for  1.5  shedding 

periods.  

Vortex  shedding i n  Problem 133.1 i s   i l l u s t r a t e d  by the   ve loc i ty   vec to r  

p l o t s  of  Figures 20 - 23. A s  i n   t he   ca se  of  Problem 133.0,  the  right-hand 

vo r t ex   shed   f i r s t ,   bu t  now a t  a cha rac t e r i s t i c   t ime  T of  4.63. I n i t i a l  shedding 

on the   r i gh t  was due to   i n i t i a l   t r ansve r se   mo t ion  of   the  cyl inder   in   the 

pos i t ive   x -d i rec t ion   wi th  a period much longer  than  the  time  needed  to  induce 

sheddi-ng (see  Section  2.6).  A comparison  of  the wake a t  a  Reynolds number  of 

1000.0  (Figure  23, T = 9.08) w i t h   t h a t   a t  a  Reynolds number of  100.0  (Figure 7 ,  

7 = 10.45),   indicates a  more  random s e t  of v e l o c i t y   v e c t o r s   f o r  R = 1000.0. 

The turbulen t   charac te r  of the wake a t  R = 1000.0 i s  consistent  with  our  previous 

resu l t s   regard ing   pressure   osc i l la t ions   recorded  on the  leeward  side of  a cyl inder  , 
and with  the  experimental   results  of Roshko . Ear l ie r   numer ica l   ca lcu la t ions  

r e su l t ed   i n   p re s su re   va r i a t ions  which  were  smooth a t  R = 100.0,   but  exhibited 

elements  of  randomness a t  R = 1000.0; Roshko found t h a t   t h e   v o r t e x   s t r e e t  from 

a cyl inder  was laminar a t  a  Reynolds number of 100, and t u r b u l e n t   a t  a Reynolds 

number of 1000.0. 

3 
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Based  on the  numerical   resul ts  of  Problem  133.1, t h e   e f f e c t s  of 

Reynolds number on the  shedding  frequency,  drag, and l i f t  were determined. 

When a p e r i o d i c   s t e a d y   s t a t e  had  been  achieved,  the  vortices  shed a t  a 

Strouhal number of  0.21,  which  corresponds to   the   S t rouhal  number measured 

f o r  a s t a t iona ry   cy l inde r  a t  R = 1000.0. The time-averaged  drag  coefficient 

was 0.53. A drag  coeff ic ient   of  0.53 i s  approximately  half   that  of a s t a -  

t ionary  cyl inder  a t  R = 1000.0; t h i s   r e s u l t  i s  consis tent   with  the  drag 

dependence  found a t  R = 100  as   the  cyl inder   osci l la t ion  f requency  increased.  

The t ime-averaged  drag  coefficient i s  presented  in   Figure 24 a s  a function  of 

Reynolds number f o r  a cylinder  oscil lation  frequency  corresponding  to a 

Strouhal number of  0.17. The s ta t ionary   cy l inder   da ta   p resented   in   F igure  24 

were  used a s  a bas is   for   fa i r ing   the   curve  shown for   the   osc i l la t ing   cy1 , inder .  

I t  can  be  seen from Figure 24 t h a t ,   a s   i n   t h e   c a s e  of a s t a t iona ry   cy l inde r ,  

the  drag  coeff ic ient   decreases   with Reynolds  number. In   t he   o sc i l l a to ry   ca se ,  

the computed  root-mean-squared l i f t   c o e f f i c i e n t  was about  0.18;  the  calculation 

f o r  a s t a t i o n a r y   c y l i n d e r   a t  R = 1000.0 was p a r t  of a n   e a r l i e r  program i n  which 

C (r.m.s.) was not  computed,  nor to   our  knowledge  have  root-mean-squared l i f t  

data  been  measured. 
L 
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3.0 CONCLUSIONS AND RECOMMENDATIONS 

The  work summarized in  t h i s   r e p o r t   c o n s t i t u t e s   o u r   f i r s t   a t t e m p t  

t o   e x t e n d   t h e  AFTON 2P code,  and the  numerical  methods i t  embodies, 

t o  problems  of  viscous,   compressible  f low  about  accelerating  structures.  

The  pr incipal   conclusion  reached  in   the work repor ted   here  i s  s imi l a r  

t o   t ha t   o f   ou r   s t a t iona ry   cy l inde r   ca l cu la t ions3 :  up t o  a Reynolds 

number of 5000 comple te   f low  f ie lds   about   acce le ra t ing   bodies   can ,   a t  

f e a s i b l e   c o s t ,  be   predicted  quant i ta t ively  by AFTON 2P with  an  accuracy 

suf f ic ien t   for   a lmost  any practical   purpose.   Furthermore,   by  incorpor- 

a t i n g  a var iable   t imestep  into  the  numerical   technique,  it i s  q u i t e  

l ikely  that   an  accuracy  comparable   to   that   obtained  in   the  problems 

reported  here  can  be  achieved up t o  a Reynolds number of  15 x 10 6 

( t h e  Reynolds number f o r  a f u l l  scale Saturn V vehicle)   and  for  a 

class  of  two-dimensional  accelerating  bodies  which  includes  most  shapes 

o f   p r a c t i c a l   i n t e r e s t .  

These  conclusions rest  both  on  numerical   resul ts   obtained  previous-  

l y   fo r   s t a t iona ry   cy l inde r s2a3 ,  and   on   the   spec i f ic   resu l t s   d i scussed  

i n   d e t a i l   i n   S e c t i o n  2.0. The bas ic   suppor t ing   fac ts  w i l l  now be 

summarized. 

Our previous  stationary  cylinder  calculations  were  performed  in 

two separate   programs.   In   the  f i rs t   program, i t  was e s t ab l i shed   t ha t  

for   r igh t   cy l inders   o f   fa i r ly   s imple   shape ,   impor tan t   g ross   para-  

meters s u c h   a s   l i f t ,   d r a g 2  and Strouhal number could   be   ca lcu la ted  up 

t o  Reynolds  numbers  of  1000.0.  For  example, a t  a Reynolds number of 

100, the   ca lcu la ted   d rag   coef f ic ien t  was wi th in  3% of  the  experimental 

value  and  Strouhal number  was within  10%  of  the  measured  value  (see 

sec t ion  2.4) .  However, n o   s i g n i f i c a n t   e f f o r t  was devoted t o  determin- 

ing  the  accuracy  of   the  numerical   predict ions  for   the  pressure and 

v e l o c i t y   f i e l d s .  I n  the  second  program,  detailed  calculations were 

performed a t  Reynolds  numbers  of 100 and  1000,  with f i n i t e   d i f f e r e n c e  
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meshes t h a t  w e r e  much f i n e r   t h a n  any  used i n   t h e   f i r s t  program. The AFTON 

boundary layer   p rof i les   a long   normals   to   the   cy l inder  were nowhere i n  

e r r o r  by a s  much as  1%, as determined by comparison  with  the known exact 

so lu t ion .  The p res su re   coe f f i c i en t   d i s t r ibu t ion   a round   t he   cy l inde r   a t  

a s t a g e  of subs tan t ia l   vor tex   ceve lopment ,   for  a Reynolds number of 100 

and a Mach number of .2, was wi th in  15% of  an  independent  incompressible 

viscous  f low  calculat ion;   the AFTON 2P f l u i d  is compressible.  Furthermore, 

a s tudy of the   numer ica l   so lu t ion   e r ror  showed t h a t   t h e  mesh poin t   dens i ty  

could be made s u f f i c i e n t l y   l a r g e   i n   p r a c t i c e   t o   r e d u c e   t h e  maximum pressure 

c o e f f i c i e n t   e r r o r   f o r   t h e   e n t i r e   c y l i n d r i c a l   s u r f a c e   t o  no more than 1.4%. 

Thus by employment of f i n e r  meshes,  any desired  solution  accuracy  can  be 

obtained. 

I n   t h e   o s c i l l a t i n g   c y l i n d e r  problems  presented  In  Section 2.0, 

vortex  shedding was i n i t i a t e d  by the  asymnetries  introduced by the   shut -  

t l i ng   cy l inde r ,   w i thou t   t he   i n t roduc t ion  of a r t i f i c i a l   p e r t u r b a t i o n s .  

This  result   conforms  to  experimental   observation. The f i n i t e   d i f f e r e n c e  

mesh employed i n   t h e s e   o s c i l l a t i n g   c y l i n d e r  problems was i d e n t i c a l   t o  

t h a t  employed i n   t h e   s t a t i o n a r y   c y l i n d e r  problems  of  our f i r s t  program. 

Thus, i t  is r easonab le   t o  assume tha t   t he   accu racy   o f   t he   ca l cu la t ed   l i f t ,  

drag, and Strouhal  number i n   t h e   o s c i l l a t i n g   c y l i n d e r  problems i s  appro- 

pr ia te   to   the   cor responding   s ta t ionary   cy l inder   parameters   ca lcu la ted   in  

t h e   f i r s t  program.  Furthermore,  the  calculated  relationships  between  the 

cy l inder   osc i l la t ion   f requency  and the  root-mean-squared l i f t   c o e f f i c i e n t ,  

t ime-averaged  drag  coefficient and Strouhal  number a r e   q u a l i t a t i v e l y  con- 

s i s t e n t   w i t h   c l e a r  and s i m p l e  physical   considerat ions  (see  Sect ion 2.6) .  

Final ly ,   s ince  increased  accuracy was ach ieved   a t   f ea s ib l e   cos t  by mesh 

ref inement   in   the  s ta t ionary  cyl inder   problems of our  second  program, i t  

appears   tha t  a s imi l a r   i nc rease   i n   accu racy   can  be a t t a i n e d  by employing 

f i n e r  meshes i n   t h e  moving cy l inde r  problems. 
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A development  important t o   f u t u r e   c a l c u l a t i o n s  l i e s  in   the   d i scovery  

o f   f i n i t e   d i f f e rence   equa t ions  which preserve a l l  t he   p rope r t i e s   o f  

self-consis tency  of   the  present   equat ions,   but   in   which  the  t ime-step 

can  be  var ied from  zone t o  zone. In t h i s  way, the  var iables   of   motion 

need  only  be  calculated  for  a given zone a s   o f t en   a s   r equ i r ed  by  con- 

s i d e r a t i o n s   o f   s t a b i l i t y   f o r   t h a t  zone  and i t s  immediate  neighbors, 

r a the r   t han   fo r   t he   l ea s t   s t ab le  zone  of t h e   f i n i t e   d i f f e r e n c e  mesh. 

The increase   in   speed   of   so lu t ion   of   p roblems  l ike   those   repor ted   here  

was p o t e n t i a l l y  so grea t   tha t   var iab le   t imes tep  (VTS) equat ions were 

investigated  in  one  space  dimension. An increased  speed  of  solution 

by a f a c t o r   o f   f i v e  was obtained.   This   factor   shouid  be  even  greater  

i n  two dimensions,  using a two-dimensional  counterpart  of  our  one- 

dimensional VTS scheme. It i s  therefore  recommended t h a t  a var iab le  

t imestep  be  incorporated  into  the AFTON 2P computer  code  for moving 

cyl inders ,   and  that  a numerical  investigation  be  conducted  of  flow 

f ie lds   about   osc i l la t ing   cy l inders   in   the   h igher   Reynolds  number regime 

(i .e. ,  10 to   15  x 10 ). The experimental   data   of  J.J. Cincotta  could 

be  used  to   es tabl ish  the  accuracy  of   the  numerical  r e su l t s  i n   t h i s  

range  of  Reynolds number. 

6 6 
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APPENDIX A 

EQUATIONS OF MOTION IN A  MOVING  COORDINATE  SYSTEM 

In this  section  the  integral  equations  of  motion  are  developed 

in a coordinate  system  fixed  relative  to  a  moving  obstacle  immersed 

in  a  viscous,  compressible  fluid. 

The integral  equations of motion  in  the  moving  coordinate 

system  will  be  derived  in Cartesian  tensor  notation",  where  the 
position  vector  is  defined by x and  the  velocity  vector is defined i 
by ui (i = 1, 2, or 3). Consider  a  volume T of  three-dimensional 

space having  a  surface  area r which  is a fixed  relative  to  a  labor- 
atory  frame. In partial  differential  form,  the  conservation  equations 
are  as follows relative  to  the  laboratory  frame: 

Continuity 

where t is  the time, p is  the  density,  and,  by  the  summation  conven- 
tion, the  repeated  indices  indicate  the  summation 

First Law 

where  E is  the  specific  internal  energy  and Pb is  the  stress  tensor. 
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Momen tum 

'(PUJ a apw 
a t  ax, P a  axP 
- " - ( P u u )  = - 

The t ransformat ion   equat ions   re la t ing   the   l abora tory  and 

moving  frames w i l l  now be  presented.  Consider a moving 

coordinate  system  with a pos i t i on   vec to r  x and v e l o c i t y  

vector  u .  measured r e l a t i v e   t o   t h i s  system. Let t he   ve loc i ty  of 

the moving coordinate  s y s t e m  be  denoted  V.(t) ( i  = 1, 2,  o r  3 ) .  The 

relat ionship  between  the  laboratory frame  and the  moving frame  can 

be defined by the  fol lowing  Gal i lean  t ransformation:  

i 

where t '  i s  the  time i n   t h e  moving frame.  Based  on  the  transformation 

equat ions  (14 ) t he   pa r t i a l   de r iva t ives   i n   t he   l abo ra to ry   and  moving 

frames may be  re la ted  as   fol lows:  

F ina l ly   t he   pa r t i c l e   ve loc i t i e s   i n   t he   l abo ra to ry   and  moving frames 

a r e   r e l a t e d   a s  follows: 

u = u " vi (t) i i  
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Based  on  the  above  transformation  equations,  the  conservation laws 

r e l a t i v e   t o   t h e   l a b o r a t o r y  frame  Equations ( A I ' ) ,  (-12;) and ( 13 ), 

can  be  transformed  to '   the moving  frame. The conservation  equations 

r e l a t i v e   t o   t h e  moving  frame are as follows: 

Cont inui ty  

g1 + =q a = O 

F i r s t  Law 

where the  stress t enso r  Peoc remains  unchanged  since i t  i s  p ropor t iona l   t o  

-3 which i s  unaffected by the  t ransformation.  

Momen turn 

It i s  seen  from t h e  transformed  Equations ( 1 7 ) ,  (18) and  (19) t h a t ,  

as   d i scussed   in   Sec t ion  1.3, only  the momentum equation  has  changed 

in   t he  moving coord ina te  sys t em.  From t h e  Gauss Theorem, r e l a t i n g  a 

volume i n t e g r a l   t o  a surface  integral ,   Equat ions  (17) ,  (18) and (19) 

can be t ransformed  to   in tegra l  form. The Gauss Theorem is as  follows: 
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where 7 '  i s  the   f i xed  volume 7 d e f i n e d   r e l a t i v e   t o   t h e  moving coordin.ate 

su r face  (7'  = 7) , r' i s  the   su r f ace   a r ea   o f  I? def ined   r e l a t ive .   t o   t he  

moving coordinate  system (r'=r) , g i s  any  tensor  defined  within 7 '  

and whose der ivat ives   are   cont inuous  there ,   and i s  t h e   d i r e c t i o n  

cosine  of   the  normal   to   the  surface r '  i n   t h e   d i r e c t i o n  p .  Based  on 

Equat ion   (20)   the   f ina l   in tegra l   equa t ions   o f   mot ion   re la t ive   to  

moving coordinate  system become: 

Continui ty  

1 

F i r s t  Law 

Momen tum 

The  body fo rce  term p dT1) in  Equation  (23) is the   on ly  term d", 

which  must  be  added to   t he   equa t ions   o f   mo t ion   t o  make them v a l i d   i n  

t he  moving frame. 

In   order   to   preserve  the  energy  conservat ion  property of the  

AFTON 2P equat ions  in   the moving coordinate  system, a kinematic work 
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I 

term must be subt rac ted  from the   su r f ace  work t e r m  i n   t h e   t o t a l   e n e r g y  

conservat ion  equat ion.  The to ta l   energy   conserva t ion   equat ion   in   the  

moving frame  can be derived  from  the Momentum equation  (Equation 19) 

and F i r s t  Law Equation (20). F i r s t   t he   k ine t i c   ene rgy   equa t ion   i n   t he  

moving  frame i s  derived  by  multiplying  Equation (19) by 4 , i.e. , 
Kinetic  Energy  Equation 

Adding  Equations (18) and (24 )  yie lds   the   to ta l   energy   equat ion   in  

p a r t i a l   d i f f e r e n t i a l  form 

By u t i l i z i n g   t h e  Gauss  Theorem, Equation (20) ,  Equation (25)  can  be 

p u t   i n t o   t h e   i n t e g r a l  form 
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where i t  can  be shown t h a t  pa m1 =p 1 t , p f .  Equation (26) is t h e  

required  integral   formulat ion  of   total   energy  conservat ion  in   the 

moving coord ina te  system. It is seen  .from  Equation (26) t h a t   t h e  term 

$(YP 

dT1) must  be  subtracted  from  the  surface work term 

i n   o r d e r   t o  make the   p resent   to ta l   energy   conserva t ion   re la t ion   for  a 

Euler ian  coordinate   system  val id   in  the moving frame. 

dvu 
( L I P  % 
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APPENDIX B 

AFTON 2P FINITE DIFFERENCE EQUATIOE AT IN'IERIOR MESH POINTS 
REUTIVE TO A MOVING COORDINATE SYSTEM 

Based  on Equations  (21), (22) , (23), and (26) of  Appendix A, the  

AFTON 2P f in i te   d i f fe rence   equat ions   for   an   Euler ian   coord ina te   sys tem may 

be conver ted   to   the  moving coordinate  system. The f i e l d  of  motion i n  

AFTON 2P is ac tua l ly   covered   wi th  two c l o s e l y   r e l a t e d   f i n i t e   d i f f e r e n c e  

meshes -- one fo r   t he   ca l cu la t ion  of  thermodynamic var iables   such  as  stress, 

i .e. ,  quadr i la te ra l   zones ,  and the   o ther   for   the   ca lcu la t ion   of   k inemat ic  

v a r i a b l e s   l i k e  momentum, i . e . ,  momentum zones.3  Figure 25 i l l u s t r a t e s  

the two types of  meshes i n  two space  dimensions. The cont inui ty  and f i r s t  

l a w  equa t ions   a r e   app l i ed   t o   ca l cu la t e   p rope r t i e s  on a quadr i l a t e ra l  zone 

while  the  equations of momentum and to ta l   energy   conserva t ion   a re   used   to  

ca lcu la te   p roper t ies  on a momentum zone. The f i n i t e   d i f f e r e n c e   e q u a t i o n s  

r e l a t i v e   t o   t h e  moving coordinate   system  are  as follows: 

Def in i t ions :  

" 

E = S(X7Y) C a r t e s i a n   c o o r d i n a t e   p o s i t i o n   r e l a t i v e   t o   t h e  

- u = i ( u , v )  m a t e r i a l   v e l o c i t y   r e l a t i v e   t o  a coordinate   point  

E in te rna l   energy  

moving  frame 

i n   t h e  moving frame 

H 

w 
-c 
V 

P 

k 
A 
- 
m 

V 

- M 

un i t   vec to r   i n   t he   x -d i r ec t ion  (i.e.,  the  plane of 
flow, and normal t o   t h e   f r e e   s t r e a m   f l o w   r e l a t i v e   t o  
the  laboratory  frame) 

t o t a l   e n e r g y  

r a t e  of  work 

v e l o c i t y  of t h e  moving frame relative t o   t h e  
laboratory  frame 

ma te r i a l   dens i ty  

u n i t   v e c t o r  normal to   (x ,y)   p lane  

mass 

volume 

momentum 
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P 

At 

Y 

viscosity 

times  tep 

ratio  of  specific  heats 

P fluid  pressure 
U' U' 7 
x) y' xy 

P 

A 
w 

viscous  stresses 

Equations: 

Ax = A s i n w t  

V = i w A c o s  u) t A 

-C - 

p - ut1 

displacement  in  the  x-direction of  the  moving 
coordinate  system  relative  to  the  laboratory  frame 
(displacement  of  cylinder  relative  to  laboratory 
frame) 

amplitude  of  cylinder  displacement 

frequency  of  cylinder  displacement 
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where : i=l , 2 , 3 , 4 

d = -d 
i Y  i x  

and , 

(43) 
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- av 
aY = A v + A  v + A  v + A  v l y  1 2y  2 3y 3 4y  4 

N 

P = (Y - 1) p1 Eo 

- E t )  At /ml 1 (57) 
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APPENDIX C 

DOWNSTREAM AND LA'IEW BOUNDARY CONDITIONS 

The  downstream  and l a t e r a l   c h a r a c t e r i s t i c  boundary  conditions  used 

i n   t h i s  program were based  on two prirlcipal  assumptions,  namely,  that  each 

streamline  of  the  f low  field  in  the  neighborhood of the  boundary a t  any 

in s t an t   o f  time c o n s t i t u t e s  a region of t ransient   one-dimensional   s lab  f low,  

and tha t   t he  souxpd speed  has i t s  free  s t ream  value a t  the downstream  boundary. 

For  the  case of the moving c y l i n d e r , t h i s   c h a r a c t e r i s t i c  boundary  condition 

was app l i ed   r e l a t ive   t o  a laboratory  frame. The f low  f ie ld   var iables   can  then 

be  calculated a t  e i the r   t he  downstream or   l a te ra l   boundar ies   as   fo l lows:  

F i r s t ,  knowing t h e   v e l o c i t y   f i e l d  a t  an   ins tan t  of  time,  the  position 

of  any par t ic le   can  be  updated by one  timestep from an   "ea r l i e r  time" t o  a 

" l a t e r  time". I n   p a r t i c u l a r ,  a par t ic le   pos i t ion   can   be  found a t  a n   e a r l i e r  

time  such t h a t  one  t imestep  la ter   the   par t ic le  w i l l  a r r i v e   a t  a given  boundary 

mesh poin t .   For   th i s   purpose   the   d i scre te   ve loc i ty   f ie ld  is assumed constant 

during  the  t imestep and i s  made spat ia l ly   cont inuous by in t e rpo la t ion ;  we 

in t e rpo la t ed   l i nea r ly .  Thus,   one  can  calculate  the  direction of the  s t reamline 

along  which  that   par t ic le   t ravels  which a r r ives   a t   t he   g iven  boundary  point 

a t   t h e   l a t e r  time.  Let  the  boundary mesh point  be  denoted as point  "B", and 

t h e   p a r t i c l e   p o s i t i o n   a t   t h e   e a r l i e r  time as   po in t  "P"; a l so ,   l e t   t he   supe r -  

s c r i p t  "0" define a p r o p e r t y   a t   t h e   e a r l i e r   t i m e ,   l e t   t h e   s u p e r s c r i p t  "1" 

define a p rope r ty   a t   t he   l a t e r   t ime ,  and l e t   t he   absence  of  a supe r sc r ip t  

i nd ica t e  a proper ty   def ined   a t  a  time  halfway  between  the e a r l i e r  and t h e   l a t e r  

times. Due to   the  t ransverse  motion  of   the  cyl inder , the x-component  uo of the 

v e l o c i t y  of the moving coordinate   system  is   g iven by 

uo = WA Coswt (75) 
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where A i s  the  ampli tude  of   the  osci l la t ion and W is the  frequency. The 

requi red   s t reaml ine   d i rec t ion   can   be   spec i f ied   in  terms of  the components 

u ,  v  of the  average  veloci ty   vector   ( re la t ive  to   the  laboratory  f rame 

between  points B and Pyas  follows: 

" 

where is the  average  veloci ty  component i n   t he   x -d i r ec t ion ,  is the 

average  veloci ty  component in   the   y -d i rec t ion ,   uB i s  the x-component  of 

v e l o c i t y   a t   p o i n t  B, v i   i s   t h e  y-component  of v e l o c i t y   a t   p o i n t  B, At  i s  

the time increment, and (au/ax) , (av/ax)o,   (au/ay)o  are   the  veloci ty  

de r iva t ives   eva lua ted   a t   t he  zone centroid  (see Appendix B). The d i r e c t i o n  

cosines of the  required  s t reamline  are   then:  

0 

0 

where 

'DIR = at 

Assuming t h a t  sound s igna ls   t rave l   a long   the   s t reaml ine  as i n  one- 

dimensional  slab  flow, i t  i s   a l s o   p o s s i b l e   t o   c a l c u l a t e  from the known 

ear l ie r - t ime  f low  f ie ld   bo th   the   par t ic le   ve loc i ty  and the sound speed a t  

a point  S from  which a sound s igna l  would  have to   depa r t  a t  t h e   e a r l i e r  

time in  order  to  reach  the  boundary  point a t  t h e   l a t e r  time.  Based  on  the 
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zone  sound  speed  (which is assumed uniform in   each  zone)  and the  average 

veloci ty   vector   between  points  P and B, t he   l oca t ion  of the   po in t  S can  be 

determined  approximately  from  the  following  relations: 

(xs - xB) = -(c + C) XDIR A t  

where C i s  the  zone  sound speed. From the  Equations (82), (83) and the 

d i s c r e t e   v e l o c i t y   f i e l d   a t   t h e   e a r l i e r  time ( i . e . ,  t i m e  "0") the  components 

of t h e   v e l o c i t y   v e c t o r   a t   p o i n t  S a t   t h e   e a r l i e r  time a r e  

uo = + - (U + c) A t  + yDI; (aulay) O 
0 0  

S B c  

where u i s  the x-component o f   t he   ve loc i ty   a t  0 

S S ,  v i s  the y-component of 0 

S 
t h e   v e l o c i t y   a t  S ,  and Us i s  the  magnitude of t he   ve loc i ty   vec to r   a t  S .  

0 

Based  on the  assumption  that  the sound  speed  has i t s  free  stream 

v a l u e   a t   t h e  downstream  boundary poin t  B ,  the sound  speed a t   t h e   p o i n t  S can 

be  determined a t   t h e   e a r l i e r  time by l inear   in te rpola t ion .   For   the  downstream 

boundary,   the   re la t ion is as  follows: 

C l  = Cm + 2 (U + C) YDIR A t  
- 

A t  a l a t e r a l  boundary  Equation (87) is replaced  by  the  equation 

cs" = c, + 2 (E + C) XDIR At (&?A) 
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where C i s  the sound speed a t  S ,  C, i s  the   f r ee  stream sound speed, C i s  

the sound speed  of  the  zone  containing  the  point S ,  and  yA i s  the  y-coordinate 

of t he   i n t e r io r  mesh poin t  "A" ad j acen t   t o   t he  boundary  point B. 

0 

S 

According to   the  method  of c h a r a c t e r i s t i c s   a s   a p p l i e d   t o   t h e  one- 

dimensional  l inear  isentropic  f low  of a polytropic   gas ,   the  Riemann va r i ab le  

R = U + 2C/(y-1) 

is constant  along any  sound s igna l   t ra jec tory ,   whereY f s  t h e   r a t i o  of hea t  

capaci t ies   for   the  gas .  By hypothesis  here,   each  streamline  in  the  neighbor- 

hood  of the downstream  boundary is a region  of  one-dimensional,   l inear  isen- 

tropic  f low  during a t imestep of the  numerical   calculat ion.  Hence, the Riemann 

va r i ab le  R has  the same va lue   a t   the   po in t  S a t  time 0, a s  i t  has   a t   t he   po in t  B 

a t  time 1, namely 

From the assumed f r e e  stream speed  of  sound a t   t h e  boundary  point B, and 

the known Riemann inva r i an t ,   t he   pa r t i c l e   ve loc i ty   i n   t he   s t r eaml ine   d i r ec t ion  

can  then  be computed a t   t h e   p o i n t  B a t   t he   l a t e r   t ime ,   a s   fo l lows :  

UB = us + cc; - Cm)/(Y-1) 
1 0  

Assuming the   d i r ec t ion  of  flow  to  be  the same a t  times o and 1, the   pa r t i c l e  

veloci ty   can  be found as  a  complete  vector  quantity  according  to  the  equations 

1 1 
B = 'B 'DIR 

= 'B 'DIR 
1 - -1 
B 
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To complete  this  description  of  downstream  boundary  flow,  mass  and 

internal  energy  are  transported  across  the  boundary  at  the  densities  charac- 

teristic  of  the  interior  of  the  zone  containing  the  point S. This  boundary 
condition  has  now  been  applied  downstream  in  many  calculations of viscous 

compressible  flow  around  obstacles,  where  it  appears to  provide a good  approxi- 

mation to flow  out  of  the  region  of  calculation. 
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APPENDIX D 

NOMENCLATURE 

a, Cylinder  radius 

A ,  Amplitude  of o s c i l l a t i o n  of the   cy l inder  

c, Local  speed  of  sound, c = dy 
Free stream speed of sound,  cm - 

cD’ 
Instantaneous  drag  coeff ic ient ,  ‘D - 1 

- Drag 

2 p a d  

- 
cD 

- 
Time-averaged  drag  coefficient,  cD = $lT CD d t  

cL, Instantaneous l i f t   c o e f f i c i e n t ,  - L i f t  
cL - %Pm u: d 

Time-averaged l i f t   c o e f f i c i e n t ,  
- 
cL = $tT CL d t  

C ( r . m . s . ) ,  Root mean square l i f t   c o e f f i c i e n t ,  C (r.m.s.) = L L [$JT C z  d;]’ 

C (r.m.s.), Root  mean square l i f t   c o e f f i c i e n t   f o r  a s t a t iona ry   cy l inde r  
LO 

C 
P I  

P - Pa 
Loca l   p ressure   coef f ic ien t ,  C = 

P .sipmu: 

C Spec i f ic   hea t  a t  constant   pressure 
P’ 

CV’ 
S p e c i f i c   h e a t   a t   c o n s t a n t  volume 
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Cylinder  diameter 

Mach  number, M = U/a 

Free  stream  Mach  number, Mm = UW/.cm 

Shedding  frequency 

Pressure 

Free  stream  pressure 

Riemann  invariant, P = - a t - U  
Y -  1 

Reynolds  number, R = pUd 
IJ 

Arc  length 

Strouhal  number, S = - 
Strouhal  number  for  stationary  cylinder 

Time 

nd 
U 

Temperature 

Time  integration  interval  for  evaluation of time  averages 

Local  velocity  component  in  the  boundary  layer  parallel 

to the wall 

Magnitude  of  free  stream  velocity  vector 

Magnitude of local  velocity  vector 
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Local  velocity  vector 

Coordinate  normal to free  stream  velocity  vector 

Coordinate  parallel to  free  stream  velocity  vector 

Ratio  of  specific  heats, y = Cp/Cv 

Boundary  layer  thickness 

Density 

Dimensionless  cylinder  oscillation  frequency, 6 = - wd 
2 m m  

Free  stream  density 

Angle  measured  along  the  circumference  of  the  cylinder from 

the  forward  stagnation  point. 

Characteristic time; the  number of.cylinder diameters  that 

a particle  traveling  with  free  stream  velocity  would  move 

in  a  given  time. 

Angular  frequency  of  cylinder  oscillation 
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Figure 1. F i n i t e   d i f f e r e n c e  mesh (43  X 80); This 
f i n i t e   d i f f e r e n c e  mesh has  an  upstream bound- 
a r y   l o c a t e d   a t  y =-20 crn,although  only  the 
po r t ion  of  the mesh downstream  of y =-7 cm 
i s  indicated.  
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Figure 3 

Wall shear stress   distributions vs.  time at  points on the cylindrical  surface,  plus and 
minus  90 degrees f r m  the  forward stagnation  point of the  cylinder; Problem 133.0, 
R = 100.0, M, = 0.20; time i s  measured frcm the  start of cylinder  motion, f - e . ,  1.19 msec 
after  the  start  of  motion. 
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, , \\.\. - Figure 4 .  v e l o c i t y  Vector   P lo t  of t h e  Moving Cylinder  
Flow F i e l d   a t  a time when t h e   f r e e  stream 
p a r t i c l e s   h a v e  moved 7.08 cy l inder  
d iameters ;  Problem 133.0, R = 100, M, = 0.20; 
Osc i l l a t ion   f r equency  2.42 radius/msec,  Os- 
c i l l a t i o n   a m p l i t u d e  10% of cy l inde r   r ad ius .  
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2 ' ' - " A " % -  .. "'"L" '""1 Figure 5 .  Velocity Vector Plot of the Moving 
\ ,...\.\X x.-.\\\ Cylinder Flow Field  at  a time when 

the free stream particles have moved 

R = 100, M, = 0.20; Oscillation frequency 

10% of cylinder  radius. 

A-" L - " ' . " 1" """ 7 . 9 5  cylinder diameters; Problem 133.0, 
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Velocity  Vector P l o t  of the Moving 
Cylinder  Flow F i e l d   a t  a time when 

8.90 cy l inder   d iameters ;  Problem  133.0, 
the   f ree   s t ream  par t ic les   have  moved 

R = 100, M, = 0.20; Osc i l l a t ion   f r equency  
2.42 radius/msec,   Osci l la t ion  ampli tude 
10% of cy l inder   rad ius .  
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Veloci ty   Vector   Plot  of the Moving 
Cylinder Flow F i e l d   a t  a time when the 
f r e e   s t r e a m   p a r t i c l e s  have moved 10.45 
cyl inder   diameters ;  Problem  133.0, 
R = 100, M, = 0.20; Osci l la t ion  f requency 
2.42 radius/msec,  Oscil lation  amplitude 
10% of cy l inder   rad ius .  



is 10% of the cylinder diameter. 
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Figure  -12 

Veloci ty   Vector   Plot  of the moving cy l inde r  
f l o w   f i e l d   a t  a time when the   f ree   s t ream 

Problem  133.2, R = 100.0, M, =.20; o s c i l l a t i o n  
pa r t i c l e s   have  moved 10.65 cy l inder   d iameters ;  

frequency 10.0 radians/msec,oscillation ampli- 
tude 10% of  cyl inder   radius .  



Figure 13 
Wall shear stress  distribution$, XS. time at  
points on the  cylindrical  surface  plus and 
minus 90 degrees from the forward stagnation 
point; Problem 133.2, R = lOP.0, M, = .20; 
time i s  measured from the  start of cylinder 
motion, i . e . ,  1 .19  mecs   a f t er  the  start of 
motion. 



Dimensionless  Cylinder  Oscillation  Frequency, 0 

Figur;e 14 
Time-averaged llrag mefficient variation 
with  dimensionless  cylinder  oscillation 
‘frequency; R = 100.0, M, = 0.20; cylinder 
oscillation double amplitude 10% of the 
cylinder diameter. 
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Figure 17 
Pressure coefficient distribution along the 
cylindrical surface at a time when the free 
strerun particles have moved 10.45 cylinder dia
meters; Problem 133.0, Instantaneous Lift 
Coefficient, CL = 0.1665. 
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Figure 20 
Velocity  Vector  Plot of t h e  moving c y l i n d e r  

p a r t i c l e s  have moved 5.08 cyl inder   d iameters ;  
f l o w   f i e l d   a t  a time when t h e   f r e e   s t r e a m  

Problem  133.1, R = 1000.0, Mm = .20; o s c i l l a -  

amplitude  10% of cy l inde r   r ad ius .  
t i on   f r equency  2.42 r ad ians /msec ,   o sc i l l a t ion  2 
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o Measurements of Wieselsberger  for @ = 0.0 

0 Numerical Data for @ = 0.17 

TIm-AVEMGED DRAG COEFFICIENT, CD 
- 

Figure 24 
Variation of time-averaged  drag  coefficient 
VS. Reynolds  number; numerical  data  from 
Problems 133.1 ahd 133.0; experimental  data 
of Wieselsberger, 
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